Network AI Architecture for Everyone-Centric Customized Services

IEEE TNSE Distinguished Seminar Series is co-sponsored by IEEE Transactions on Network Science and Engineering (TNSE) and Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), with joint support from The Chinese University of Hong Kong, Shenzhen, Network Communication and Economics Laboratory (NCEL), and IEEE. This series aims to bring together top international experts and scholars in the field of network science and engineering to share cutting-edge scientific and technological achievements.
Join the seminar on September 30 through 活动行 (http://hdxu.cn/R4vI5) or Bilibili (http://live.bilibili.com/21845454).
-
Jianwei HuangVice President, AIRS; Presidential Chair Professor, CUHK-Shenzhen; Editor-in-Chief, IEEE TNSE; IEEE Fellow; AAIA FellowExecutive Chair
-
Yang Yang特斯联科技集团首席科学家、鹏城实验室兼聘研究员、深圳市智慧城市科技发展集团有限公司高级顾问专家、IEEE Fellow、IEEE TNSE“移动网络与网络学习”领域编辑Network AI Architecture for Everyone-Centric Customized Services
杨旸,博士,IEEE Fellow,现任特斯联科技集团首席科学家,鹏城实验室兼聘研究员,深圳市智慧城市科技发展集团有限公司高级顾问专家。曾任上海科技大学教授、科道书院院长、上海雾计算实验室主任;科技部“第五代移动通信系统(5G)前期研究开发”重大项目总体专家组专家;国家科技重大专项“新一代宽带无线移动通信网”总体组专家;中科院上海微系统与信息技术研究所研究员、福州物联网开放实验室首席技术官、中科院无线传感网与通信重点实验室主任、上海无线通信研究中心主任。研究领域包括5G/6G移动通信系统、智能物联网、多层次算力网络,开放无线测试验证平台等。已申请了120多项科技发明专利(已授权80多项),发表了300多篇学术论文,出版了六部中英文专著。
杨旸在1996年和1999年于东南大学无线电工程系获本科和硕士学位,2002年于香港中文大学信息工程系获博士学位。之后,留在香港中文大学信息工程系担任助理教授。2003年8月到英国布鲁奈尔大学(Brunel University)的电子与计算机工程系担任讲师。2005年3月到英国伦敦大学学院(UCL)电子与电气工程系担任讲师,后升职为高级讲师(终生教职)。杨旸牵头承担了国家科技重大专项(03专项)、国家863计划、国家自然科学基金重点等一系列前沿课题研究。由于科研业绩突出,杨旸获选国际电气与电子工程师协会会士(IEEE Fellow)、上海市“优秀学术带头人”和“领军人才”等荣誉,他牵头的“宽带无线传感网”科研团队入选为科技部创新人才推进计划“重点领域创新团队”荣誉。目前,依托深圳市智慧城市科技发展集团有限公司,杨旸牵头承担了国家重点研发计划“物联网与智慧城市关键技术及示范”重点专项项目《面向大湾区智慧城市群的5G泛在物联基础设施建设及示范(2020-2023)》。
Mobile communication standards were developed for enhancing transmission and network performance by using more radio resources and improving spectrum and energy efficiency. How to effectively address diverse user requirements and guarantee everyone's Quality of Experience (QoE) remains an open problem. The Sixth Generation (6G) mobile systems will solve this problem by utilizing heterogenous network resources and pervasive intelligence to support everyone-centric customized services anywhere and anytime. In this talk, we first coin the concept of Service Requirement Zone (SRZ) on the user side to characterize and visualize the integrated service requirements and preferences of specific tasks of individual users. On the system side, we further introduce the concept of User Satisfaction Ratio (USR) to evaluate the system’s overall service ability of satisfying a variety of tasks with different SRZs. Then, we propose a network Artificial Intelligence (AI) architecture with integrated network resources and pervasive AI capabilities for supporting customized services with guaranteed QoEs. Finally, extensive simulations show that the proposed network AI architecture can consistently offer a higher USR performance than the cloud AI and edge AI architectures with respect to different task scheduling algorithms, random service requirements, and dynamic network conditions.
Video Archive